DEVLOPMENT LOG¶
2025 - NOV¶
Tiny-DSP Module Feature Overview¶
The tiny-dsp module currently provides the following main features:
Transform Module¶
- FFT (
tiny_fft): Fast Fourier Transform - DWT (
tiny_dwt): Discrete Wavelet Transform - ICA (
tiny_ica): Independent Component Analysis
Filter Module¶
- FIR Filter (
tiny_fir): Finite Impulse Response filter - IIR Filter (
tiny_iir): Infinite Impulse Response filter
Signal Processing Module¶
- Convolution (
tiny_conv): Convolution operations with various padding and output modes - Correlation (
tiny_corr): Signal correlation analysis functions - Resampling (
tiny_resample): Signal sampling rate conversion
Support Module¶
- Signal Visualization (
tiny_view): Signal viewing and analysis tools
Tiny-Math Module Progress¶
Matrix Decomposition Functions¶
- LU Decomposition (
lu_decompose): Supports LU decomposition with and without pivoting for efficient linear system solving - Cholesky Decomposition (
cholesky_decompose): Specialized decomposition method for symmetric positive definite matrices - QR Decomposition (
qr_decompose): Orthogonal-triangular decomposition for least squares problems and numerically stable solving - SVD Decomposition (
svd_decompose): Singular value decomposition supporting rank estimation and pseudo-inverse computation
Eigenvalue Calculation Functions¶
- Power Iteration (
power_iteration): Computes the dominant eigenvalue (largest magnitude) and corresponding eigenvector - Inverse Power Iteration (
inverse_power_iteration): Computes the smallest eigenvalue, suitable for fundamental frequency detection in system identification - Jacobi Eigendecomposition (
eigendecompose_jacobi): Complete eigendecomposition for symmetric matrices - QR Eigendecomposition (
eigendecompose_qr): Eigendecomposition method for general matrices