CODE¶
Warning
The following code should be based on the code in the release code, which may have been updated.
CMakeLists.txt¶
set(src_dirs
.
)
set(include_dirs
include
)
set(requires
driver
tim
esp_rtc
spi_sdcard
mpu6050
exit
lcd
led
wifi
esp32_mqtt
tiny_toolbox
)
idf_component_register(SRC_DIRS ${src_dirs} INCLUDE_DIRS ${include_dirs} REQUIRES ${requires})
measurement.h¶
/**
* @file measurement.h
* @author SHUAIWEN CUI (SHUAIWEN001@e.ntu.edu.sg)
* @brief This file is the header file for the measurement module.
* @version 1.0
* @date 2025-04-01
* @copyright Copyright (c) 2025
* @note Currently, the sesning is realized by FreeRTOS, and therefore the upper limit sampling rate is 1kHz.
* @todo Sampling by timer + interrupt
* @todo Sampling by DMA
*/
#ifndef __MEASUREMENT_H__
#define __MEASUREMENT_H__
/* DEPENDENCIES */
// SYSTEM
#include "esp_system.h" // ESP32 System
#include "esp_log.h" // ESP32 Logging
// RTOS
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/event_groups.h"
#include "freertos/queue.h"
#include "freertos/timers.h"
#include "freertos/semphr.h"
// BSP
#include "driver/gptimer.h"
#include "led.h"
#include "lcd.h"
#include "tim.h"
#include "esp_rtc.h"
#include "spi_sdcard.h"
#include "wifi_wpa2_enterprise.h"
#include "mqtt.h"
#include "mpu6050.h"
// TinyAuton/TinySHM
#include "TinyAdapter.h"
/* VARIABLES */
extern struct SenseConfig streamline_config; // Streamline configuration
extern struct SenseConfig sense_config; // Sense configuration
/* FUNCTIONS */
/**
* @name acc_streamline_task
* @brief This function is the task for streaming the accelerometer data.
* @param pvParameters for FreeRTOS, the passed parameters are all void pointers and need to be casted to the correct type.
* @retval None
*/
void acc_streamline_task(void *pvParameters);
/**
* @name acc_sense_task
* @brief This function is the task for sensing the accelerometer data according to the configuration structure.
* @param pvParameters for FreeRTOS, the passed parameters are all void pointers and need to be casted to the correct type.
* @retval None
*/
void acc_sense_task(void *pvParameters);
#endif /* __MEASUREMENT_H__ */
measurement.c¶
/**
* @file measurement.c
* @author SHUAIWEN CUI (SHUAIWEN001@e.ntu.edu.sg)
* @brief This file is the source file for the measurement module.
* @version 1.0
* @date 2025-04-01
* @copyright Copyright (c) 2025
* @note Currently, the sesning is realized by FreeRTOS, and therefore the upper limit sampling rate is 1kHz.
* @todo Sampling by timer + interrupt
* @todo Sampling by DMA
*/
/* DEPENDENCIES */
#include "measurement.h"
/* VARIABLES */
static const char *TAG = "TinySHM-Measurement"; // Tag for logging
// static uint8_t mpu6050_deviceid; // MPU6050 Device ID
static mpu6050_acce_value_t acce; // MPU6050 Accelerometer Value
// static mpu6050_gyro_value_t gyro; // MPU6050 Gyroscope Value
static mpu6050_temp_value_t temp; // MPU6050 Temperature Value
// static complimentary_angle_t angle; // Complimentary Angle
/* DEFINITION */
struct SenseConfig
{
int sample_rate;
int sample_duration;
bool temperature_sense; // whether to sense temperature
bool printout; // not recommened for high sample rate as it will slow down the process
bool mqtt_pub; // not recommened for high sample rate as it will slow down the process
};
struct DataStruct
{
int sample_rate;
int sample_duration;
float sensor_temperature;
TinyTimeMark_t start_time_stamp;
TinyTimeMark_t *time_stamp;
float *acc_data;
float *temperature;
};
/* VARIABLES */
// for streamline configuration
struct SenseConfig streamline_config = {
.sample_rate = 1, // Sample rate in Hz. For local printout + mqtt, at most 25Hz; for only mqtt, at most 200Hz.
.temperature_sense = true, // Whether to sense temperature
.printout = true, // Only available for sampling rate <= 100Hz
.mqtt_pub = true // Only available for sampling rate <= 100Hz
};
// for sensing configuration
struct SenseConfig sense_config = {
.sample_rate = 500, // Sample rate in Hz, only can be (1, 2, 5, 10, 20, 25, 50, 100, 200, 500) for FreeRTOS based sensing. Note can not be 1000Hz (no time to feed the watchdog).
.sample_duration = 1, // Sample duration in seconds
.printout = true // Only available for sampling rate <= 100Hz
};
// for data structure
struct DataStruct data_struct = {
.sample_rate = 0, // Sample rate in Hz
.sample_duration = 0, // Sample duration in seconds
.sensor_temperature = 0.0,
.start_time_stamp = 0,
.acc_data = NULL};
/* FUNCTION PROTOTYPES */
/**
* @name acc_streamline_task
* @brief This function is the task for streaming the accelerometer data.
* @param pvParameters for FreeRTOS, the passed parameters are all void pointers and need to be casted to the correct type.
* @retval None
*/
void acc_streamline_task(void *pvParameters)
{
// streamline variables
float acc_x, acc_y, acc_z, temperature;
TinyTimeMark_t time_stamp;
// MQTT publish buffer
char streamline_buff[256];
struct SenseConfig *config = (struct SenseConfig *)pvParameters;
TickType_t xLastWakeTime = xTaskGetTickCount();
const TickType_t xFrequency = pdMS_TO_TICKS(1000 / config->sample_rate);
if (config->sample_rate > 100 && config->printout)
{
ESP_LOGW(TAG, "Printout is disabled for sample rate > 100Hz.");
config->printout = false;
}
while (1)
{
// get the time stamp
time_stamp = tiny_get_running_time();
// get accelerometer data
mpu6050_get_acce(mpu6050, &acce);
acc_x = acce.acce_x;
acc_y = acce.acce_y;
acc_z = acce.acce_z;
// get temperature
mpu6050_get_temp(mpu6050, &temp);
temperature = temp.temp;
// sprintf
if (config->printout || config->mqtt_pub)
{
snprintf(streamline_buff, sizeof(streamline_buff), "Time Stamp: %10ld, acc_x = %10.6f, acc_y = %10.6f, acc_z = %10.6f, Sensor Temperature: %4.2f °C", time_stamp, acc_x, acc_y, acc_z, temperature);
}
// print out the data - comment out for higher sample rate
if (config->printout)
{
ESP_LOGI(TAG, "%s", streamline_buff);
}
// MQTT publish
if (config->mqtt_pub)
{
esp_mqtt_client_publish(s_mqtt_client, MQTT_PUBLIC_TOPIC, streamline_buff, strlen(streamline_buff), 0, 0); // for streamline, data quality is not expected to be high, so QoS = 0; data retaintion is also not required, so 0.
}
vTaskDelayUntil(&xLastWakeTime, xFrequency);
}
ESP_LOGI(TAG, "Streamline terminated. Task will delete itself.");
vTaskDelete(NULL);
}
/**
* @name acc_sense_task
* @brief This function is the task for sensing the accelerometer data according to the configuration structure.
* @param pvParameters for FreeRTOS, the passed parameters are all void pointers and need to be casted to the correct type.
* @retval None
*/
void acc_sense_task(void *pvParameters)
{
struct SenseConfig *config = (struct SenseConfig *)pvParameters;
TickType_t xLastWakeTime = xTaskGetTickCount();
const TickType_t xFrequency = pdMS_TO_TICKS(1000 / config->sample_rate);
int total_samples = config->sample_rate * config->sample_duration;
// Fill global data_struct
data_struct.sample_rate = config->sample_rate;
data_struct.sample_duration = config->sample_duration;
mpu6050_get_temp(mpu6050, &temp);
data_struct.sensor_temperature = temp.temp;
data_struct.start_time_stamp = tiny_get_running_time();
// Allocate memory
data_struct.acc_data = malloc(sizeof(float) * 3 * total_samples);
data_struct.temperature = malloc(sizeof(float) * total_samples);
data_struct.time_stamp = malloc(sizeof(TinyTimeMark_t) * total_samples);
if (data_struct.acc_data == NULL || data_struct.temperature == NULL || data_struct.time_stamp == NULL)
{
ESP_LOGE(TAG, "Failed to allocate memory for sensing data.");
if (data_struct.acc_data)
free(data_struct.acc_data);
if (data_struct.temperature)
free(data_struct.temperature);
if (data_struct.time_stamp)
free(data_struct.time_stamp);
vTaskDelete(NULL);
}
ESP_LOGI(TAG, "Sampling started: %d Hz for %d seconds (%d samples)",
config->sample_rate, config->sample_duration, total_samples);
for (int i = 0; i < total_samples; i++)
{
TinyTimeMark_t now = tiny_get_running_time();
mpu6050_get_acce(mpu6050, &acce);
mpu6050_get_temp(mpu6050, &temp);
// Store data
data_struct.time_stamp[i] = now;
data_struct.acc_data[i * 3 + 0] = acce.acce_x;
data_struct.acc_data[i * 3 + 1] = acce.acce_y;
data_struct.acc_data[i * 3 + 2] = acce.acce_z;
data_struct.temperature[i] = temp.temp;
vTaskDelayUntil(&xLastWakeTime, xFrequency);
}
ESP_LOGI(TAG, "Sampling complete.");
// Print metadata
ESP_LOGI(TAG, "-----------------------------");
ESP_LOGI(TAG, "Sensor Temperature : %.2f °C", data_struct.sensor_temperature);
ESP_LOGI(TAG, "Start Time Stamp : %ld", (long)data_struct.start_time_stamp);
ESP_LOGI(TAG, "Sample Rate : %d Hz", data_struct.sample_rate);
ESP_LOGI(TAG, "Sample Duration : %d sec", data_struct.sample_duration);
ESP_LOGI(TAG, "Total Samples : %d", total_samples);
ESP_LOGI(TAG, "Data Size : %.2f KB",
(sizeof(float) * 4 + sizeof(TinyTimeMark_t)) * total_samples / 1024.0f);
ESP_LOGI(TAG, "-----------------------------");
// Print collected data if enabled
if (config->printout)
{
for (int i = 0; i < total_samples; i++)
{
ESP_LOGI(TAG, "Time Stamp: %10ld, acc_x = %10.6f, acc_y = %10.6f, acc_z = %10.6f, Temperature: %.2f °C",
(long)data_struct.time_stamp[i],
data_struct.acc_data[i * 3 + 0],
data_struct.acc_data[i * 3 + 1],
data_struct.acc_data[i * 3 + 2],
data_struct.temperature[i]);
// Release CPU for a short time to avoid blocking
if ((i % 10) == 0)
{
vTaskDelay(pdMS_TO_TICKS(10));
}
}
}
// Free allocated memory
if (data_struct.acc_data)
{
free(data_struct.acc_data);
data_struct.acc_data = NULL;
}
if (data_struct.temperature)
{
free(data_struct.temperature);
data_struct.temperature = NULL;
}
if (data_struct.time_stamp)
{
free(data_struct.time_stamp);
data_struct.time_stamp = NULL;
}
vTaskDelete(NULL);
}