NOTES¶
DEPENDENCIES¶
SYSTEM
RTOS
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/event_groups.h"
#include "freertos/queue.h"
#include "freertos/timers.h"
#include "freertos/semphr.h"
BSP
#include "driver/gptimer.h"
#include "led.h"
#include "lcd.h"
#include "tim.h"
#include "esp_rtc.h"
#include "spi_sdcard.h"
#include "wifi_wpa2_enterprise.h"
#include "mqtt.h"
#include "mpu6050.h"
TinyAuton/TinySHM
SAMPLING CONFIGURATION STRUCT¶
Definition
struct SenseConfig
{
int sample_rate;
int sample_duration;
bool temperature_sense; // whether to sense temperature
bool printout; // not recommened for high sample rate as it will slow down the process
bool mqtt_pub; // not recommened for high sample rate as it will slow down the process
};
Usage - Streamline
// for streamline configuration
struct SenseConfig streamline_config = {
.sample_rate = 1, // Sample rate in Hz. For local printout + mqtt, at most 25Hz; for only mqtt, at most 200Hz.
.temperature_sense = true, // Whether to sense temperature
.printout = true, // Only available for sampling rate <= 100Hz
.mqtt_pub = true // Only available for sampling rate <= 100Hz
};
Usage - Normal
// for sensing configuration
struct SenseConfig sense_config = {
.sample_rate = 500, // Sample rate in Hz, only can be (1, 2, 5, 10, 20, 25, 50, 100, 200, 500) for FreeRTOS based sensing. Note can not be 1000Hz (no time to feed the watchdog).
.sample_duration = 1, // Sample duration in seconds
.printout = true // Only available for sampling rate <= 100Hz
};
SAMPLING DATA STRUCT¶
struct DataStruct
{
int sample_rate;
int sample_duration;
float sensor_temperature;
TinyTimeMark_t start_time_stamp;
TinyTimeMark_t *time_stamp;
float *acc_data;
float *temperature;
};
usage
// for data structure
struct DataStruct data_struct = {
.sample_rate = 0, // Sample rate in Hz
.sample_duration = 0, // Sample duration in seconds
.sensor_temperature = 0.0,
.start_time_stamp = 0,
.acc_data = NULL};
SAMPLING PRINCIPLE¶
- FreeRTOS based sampling
- Timer & Interrupt based sampling (to be developed)
SAMPLING MODES AND TASKS¶
Currently, there are two sampling modes: - Streamline mode - Normal mode
Streamline Sampling¶
Definition
/**
* @name acc_streamline_task
* @brief This function is the task for streaming the accelerometer data.
* @param pvParameters for FreeRTOS, the passed parameters are all void pointers and need to be casted to the correct type.
* @retval None
*/
void acc_streamline_task(void *pvParameters)
{
// streamline variables
float acc_x, acc_y, acc_z, temperature;
TinyTimeMark_t time_stamp;
// MQTT publish buffer
char streamline_buff[256];
struct SenseConfig *config = (struct SenseConfig *)pvParameters;
TickType_t xLastWakeTime = xTaskGetTickCount();
const TickType_t xFrequency = pdMS_TO_TICKS(1000 / config->sample_rate);
if (config->sample_rate > 100 && config->printout)
{
ESP_LOGW(TAG, "Printout is disabled for sample rate > 100Hz.");
config->printout = false;
}
while (1)
{
// get the time stamp
time_stamp = tiny_get_running_time();
// get accelerometer data
mpu6050_get_acce(mpu6050, &acce);
acc_x = acce.acce_x;
acc_y = acce.acce_y;
acc_z = acce.acce_z;
// get temperature
mpu6050_get_temp(mpu6050, &temp);
temperature = temp.temp;
// sprintf
if (config->printout || config->mqtt_pub)
{
snprintf(streamline_buff, sizeof(streamline_buff), "Time Stamp: %10ld, acc_x = %10.6f, acc_y = %10.6f, acc_z = %10.6f, Sensor Temperature: %4.2f °C", time_stamp, acc_x, acc_y, acc_z, temperature);
}
// print out the data - comment out for higher sample rate
if (config->printout)
{
ESP_LOGI(TAG, "%s", streamline_buff);
}
// MQTT publish
if (config->mqtt_pub)
{
esp_mqtt_client_publish(s_mqtt_client, MQTT_PUBLIC_TOPIC, streamline_buff, strlen(streamline_buff), 0, 0); // for streamline, data quality is not expected to be high, so QoS = 0; data retaintion is also not required, so 0.
}
vTaskDelayUntil(&xLastWakeTime, xFrequency);
}
ESP_LOGI(TAG, "Streamline terminated. Task will delete itself.");
vTaskDelete(NULL);
}
Usage
Normal Sampling¶
Definition
/**
* @name acc_sense_task
* @brief This function is the task for sensing the accelerometer data according to the configuration structure.
* @param pvParameters for FreeRTOS, the passed parameters are all void pointers and need to be casted to the correct type.
* @retval None
*/
void acc_sense_task(void *pvParameters)
{
struct SenseConfig *config = (struct SenseConfig *)pvParameters;
TickType_t xLastWakeTime = xTaskGetTickCount();
const TickType_t xFrequency = pdMS_TO_TICKS(1000 / config->sample_rate);
int total_samples = config->sample_rate * config->sample_duration;
// Fill global data_struct
data_struct.sample_rate = config->sample_rate;
data_struct.sample_duration = config->sample_duration;
mpu6050_get_temp(mpu6050, &temp);
data_struct.sensor_temperature = temp.temp;
data_struct.start_time_stamp = tiny_get_running_time();
// Allocate memory
data_struct.acc_data = malloc(sizeof(float) * 3 * total_samples);
data_struct.temperature = malloc(sizeof(float) * total_samples);
data_struct.time_stamp = malloc(sizeof(TinyTimeMark_t) * total_samples);
if (data_struct.acc_data == NULL || data_struct.temperature == NULL || data_struct.time_stamp == NULL)
{
ESP_LOGE(TAG, "Failed to allocate memory for sensing data.");
if (data_struct.acc_data)
free(data_struct.acc_data);
if (data_struct.temperature)
free(data_struct.temperature);
if (data_struct.time_stamp)
free(data_struct.time_stamp);
vTaskDelete(NULL);
}
ESP_LOGI(TAG, "Sampling started: %d Hz for %d seconds (%d samples)",
config->sample_rate, config->sample_duration, total_samples);
for (int i = 0; i < total_samples; i++)
{
TinyTimeMark_t now = tiny_get_running_time();
mpu6050_get_acce(mpu6050, &acce);
mpu6050_get_temp(mpu6050, &temp);
// Store data
data_struct.time_stamp[i] = now;
data_struct.acc_data[i * 3 + 0] = acce.acce_x;
data_struct.acc_data[i * 3 + 1] = acce.acce_y;
data_struct.acc_data[i * 3 + 2] = acce.acce_z;
data_struct.temperature[i] = temp.temp;
vTaskDelayUntil(&xLastWakeTime, xFrequency);
}
ESP_LOGI(TAG, "Sampling complete.");
// Print metadata
ESP_LOGI(TAG, "-----------------------------");
ESP_LOGI(TAG, "Sensor Temperature : %.2f °C", data_struct.sensor_temperature);
ESP_LOGI(TAG, "Start Time Stamp : %ld", (long)data_struct.start_time_stamp);
ESP_LOGI(TAG, "Sample Rate : %d Hz", data_struct.sample_rate);
ESP_LOGI(TAG, "Sample Duration : %d sec", data_struct.sample_duration);
ESP_LOGI(TAG, "Total Samples : %d", total_samples);
ESP_LOGI(TAG, "Data Size : %.2f KB",
(sizeof(float) * 4 + sizeof(TinyTimeMark_t)) * total_samples / 1024.0f);
ESP_LOGI(TAG, "-----------------------------");
// Print collected data if enabled
if (config->printout)
{
for (int i = 0; i < total_samples; i++)
{
ESP_LOGI(TAG, "Time Stamp: %10ld, acc_x = %10.6f, acc_y = %10.6f, acc_z = %10.6f, Temperature: %.2f °C",
(long)data_struct.time_stamp[i],
data_struct.acc_data[i * 3 + 0],
data_struct.acc_data[i * 3 + 1],
data_struct.acc_data[i * 3 + 2],
data_struct.temperature[i]);
// Release CPU for a short time to avoid blocking
if ((i % 10) == 0)
{
vTaskDelay(pdMS_TO_TICKS(10));
}
}
}
// Free allocated memory
if (data_struct.acc_data)
{
free(data_struct.acc_data);
data_struct.acc_data = NULL;
}
if (data_struct.temperature)
{
free(data_struct.temperature);
data_struct.temperature = NULL;
}
if (data_struct.time_stamp)
{
free(data_struct.time_stamp);
data_struct.time_stamp = NULL;
}
vTaskDelete(NULL);
}
Usage
TO BE DEVELOPED¶
- Standard time stamp
- Calibration
- Timer & Interrupt based sampling
- DMA
- ADC + Analog Sensor
- Data post-processing
- Batch data MQTT upload
- Real-time processing function development