跳转至

说明

说明

相关性是信号处理中的一个重要概念,通常用于分析信号之间的相似性或依赖性。它在许多应用中都很有用,例如模式识别、时间序列分析和信号检测。

滑动相关

数学原理

相关计算公式为:

\[ \text{Correlation}[n] = \sum_{m=0}^{L_p - 1} S[n + m] \cdot P[m] \]

其中:

  • \( S \) 为输入信号,长度为 \( L_s \)

  • \( P \) 为模式序列(Pattern),长度为 \( L_p \)

  • \( n \in [0, L_s - L_p] \)

输出长度计算

\[ L_{\text{out}} = L_s - L_p + 1 \]

tiny_corr_f32

/**
 * @name: tiny_corr_f32
 * @brief Correlation function
 *
 * @param Signal: input signal array
 * @param siglen: length of the signal array
 * @param Pattern: input pattern array
 * @param patlen: length of the pattern array
 * @param dest: output array for the correlation result
 *
 * @return tiny_error_t
 */
tiny_error_t tiny_corr_f32(const float *Signal, const int siglen, const float *Pattern, const int patlen, float *dest)
{
    if (NULL == Signal || NULL == Pattern || NULL == dest)
    {
        return TINY_ERR_DSP_NULL_POINTER;
    }

    if (siglen < patlen) // signal length shoudl be greater than pattern length
    {
        return TINY_ERR_DSP_MISMATCH;
    }

#if MCU_PLATFORM_SELECTED == MCU_PLATFORM_ESP32
    dsps_corr_f32(Signal, siglen, Pattern, patlen, dest);
#else

    for (size_t n = 0; n <= (siglen - patlen); n++)
    {
        float k_corr = 0;
        for (size_t m = 0; m < patlen; m++)
        {
            k_corr += Signal[n + m] * Pattern[m];
        }
        dest[n] = k_corr;
    }

#endif

    return TINY_OK;
}

描述:

计算信号和模式之间的相关性。

特点

  • 支持平台加速

参数:

  • Signal: 输入信号数组

  • siglen: 信号数组的长度

  • Pattern: 输入模式数组

  • patlen: 模式数组的长度

  • dest: 输出数组,用于存储相关性结果

返回值:

返回成功或错误代码。

交叉相关函数

数学原理

互相关计算公式为:

\[ R_{xy}[n] = \sum_{k} x[k] \cdot y[k + n] \]

其中:

  • \( x \) 为信号序列,长度为 \( L_x \)

  • \( y \) 为卷积核(Kernel),长度为 \( L_y \)

  • \( n \in [0, L_x + L_y - 2] \)

输出长度计算

\[ L_{\text{out}} = L_x + L_y - 1 \]

tiny_ccorr_f32

/**
 * @name: tiny_ccorr_f32
 * @brief Cross-correlation function
 *
 * @param Signal: input signal array
 * @param siglen: length of the signal array
 * @param Kernel: input kernel array
 * @param kernlen: length of the kernel array
 * @param corrvout: output array for the cross-correlation result
 *
 * @return tiny_error_t
 */
tiny_error_t tiny_ccorr_f32(const float *Signal, const int siglen, const float *Kernel, const int kernlen, float *corrvout)
{
    if (NULL == Signal || NULL == Kernel || NULL == corrvout)
    {
        return TINY_ERR_DSP_NULL_POINTER;
    }

    float *sig = (float *)Signal;
    float *kern = (float *)Kernel;
    int lsig = siglen;
    int lkern = kernlen;

    // swap signal and kernel if needed
    if (siglen < kernlen)
    {
        sig = (float *)Kernel;
        kern = (float *)Signal;
        lsig = kernlen;
        lkern = siglen;
    }

#if MCU_PLATFORM_SELECTED == MCU_PLATFORM_ESP32
    dsps_ccorr_f32(Signal, siglen, Kernel, kernlen, corrvout);
#else
    // stage I
    for (int n = 0; n < lkern; n++)
    {
        size_t k;
        size_t kmin = lkern - 1 - n;
        corrvout[n] = 0;

        for (k = 0; k <= n; k++)
        {
            corrvout[n] += sig[k] * kern[kmin + k];
        }
    }

    // stage II
    for (int n = lkern; n < lsig; n++)
    {
        size_t kmin, kmax, k;

        corrvout[n] = 0;

        kmin = n - lkern + 1;
        kmax = n;
        for (k = kmin; k <= kmax; k++)
        {
            corrvout[n] += sig[k] * kern[k - kmin];
        }
    }

    // stage III
    for (int n = lsig; n < lsig + lkern - 1; n++)
    {
        size_t kmin, kmax, k;

        corrvout[n] = 0;

        kmin = n - lkern + 1;
        kmax = lsig - 1;

        for (k = kmin; k <= kmax; k++)
        {
            corrvout[n] += sig[k] * kern[k - kmin];
        }
    }
#endif
    return TINY_OK;
}

描述:

计算信号和卷积核之间的互相关性。

特点

  • 支持平台加速

参数:

  • Signal: 输入信号数组

  • siglen: 信号数组的长度

  • Kernel: 输入卷积核数组

  • kernlen: 卷积核数组的长度

  • corrvout: 输出数组,用于存储互相关性结果

返回值:

返回成功或错误代码。

对比与总结

主要区别

特性 tiny_corr_f32 tiny_ccorr_f32
输出长度 \( L_{\text{out}} = L_s - L_p + 1 \) \( L_{\text{out}} = L_x + L_y - 1 \)
长度要求 信号长度必须 ≥ 模式长度 任意长度均可(需要时自动交换)
计算类型 滑动相关(仅有效区域) 完全互相关(包含部分重叠)
实现方式 单阶段嵌套循环 三阶段计算
应用场景 模式匹配、模板检测 完全相关分析、信号对齐

何时使用哪个函数

使用 tiny_corr_f32 当:

  • 需要在较长的信号中查找模式(模式匹配)

  • 只关心模式与信号完全重叠的位置

  • 信号长度保证大于模式长度

  • 需要更高效的模板匹配计算

  • 需要在信号中检测已知模式的出现

典型应用:

  • 图像处理中的模板匹配

  • 时间序列中的模式检测

  • 信号检测与识别

  • 特征匹配

使用 tiny_ccorr_f32 当:

  • 需要包含部分重叠的完全互相关

  • 两个序列的长度可以是任意的(任一序列都可能更长)

  • 需要分析两个信号之间所有可能的对齐方式

  • 需要找到两个信号之间的最佳对齐或时间延迟

  • 需要完整的相关函数进行进一步分析

典型应用:

  • 两个信号之间的时间延迟估计

  • 信号对齐与同步

  • 完全相关分析

  • 信号长度未知或可变的情况

总结

  • tiny_corr_f32 针对 模式匹配 场景进行了优化,用于在较长的信号中搜索较短的模式。它只计算模式完全重叠时的相关性,输出更短,计算更快。

  • tiny_ccorr_f32 计算任意长度的两个序列之间的 完全互相关 ,包括所有部分重叠。这提供了完整的相关信息,但需要更多计算并产生更长的输出。

选择建议:

需要高效的模式匹配时选择 tiny_corr_f32,需要全面的相关分析或信号长度可变时选择 tiny_ccorr_f32