说明¶
说明
相关性是信号处理中的一个重要概念,通常用于分析信号之间的相似性或依赖性。它在许多应用中都很有用,例如模式识别、时间序列分析和信号检测。
滑动相关¶
数学原理¶
相关计算公式为:
\[ \text{Correlation}[n] = \sum_{m=0}^{L_p - 1} S[n + m] \cdot P[m] \]
其中: - \( S \) 为输入信号,长度为 \( L_s \)
-
\( P \) 为模式序列(Pattern),长度为 \( L_p \)
-
\( n \in [0, L_s - L_p] \)
输出长度计算:
\[ L_{\text{out}} = L_s - L_p + 1 \]
tiny_corr_f32¶
/**
* @name: tiny_corr_f32
* @brief Correlation function
*
* @param Signal: input signal array
* @param siglen: length of the signal array
* @param Pattern: input pattern array
* @param patlen: length of the pattern array
* @param dest: output array for the correlation result
*
* @return tiny_error_t
*/
tiny_error_t tiny_corr_f32(const float *Signal, const int siglen, const float *Pattern, const int patlen, float *dest)
{
if (NULL == Signal || NULL == Pattern || NULL == dest)
{
return TINY_ERR_DSP_NULL_POINTER;
}
if (siglen < patlen) // signal length shoudl be greater than pattern length
{
return TINY_ERR_DSP_MISMATCH;
}
#if MCU_PLATFORM_SELECTED == MCU_PLATFORM_ESP32
dsps_corr_f32(Signal, siglen, Pattern, patlen, dest);
#else
for (size_t n = 0; n <= (siglen - patlen); n++)
{
float k_corr = 0;
for (size_t m = 0; m < patlen; m++)
{
k_corr += Signal[n + m] * Pattern[m];
}
dest[n] = k_corr;
}
#endif
return TINY_OK;
}
描述: 计算信号和模式之间的相关性。
特点
- 支持平台加速
参数:
-
Signal
: 输入信号数组 -
siglen
: 信号数组的长度 -
Pattern
: 输入模式数组 -
patlen
: 模式数组的长度 -
dest
: 输出数组,用于存储相关性结果
返回值: 返回成功或错误代码。
交叉相关函数¶
数学原理¶
互相关计算公式为:
\[ R_{xy}[n] = \sum_{k} x[k] \cdot y[k + n] \]
其中:
-
\( x \) 为信号序列,长度为 \( L_x \)
-
\( y \) 为卷积核(Kernel),长度为 \( L_y \)
-
\( n \in [0, L_x + L_y - 2] \)
输出长度计算:
\[ L_{\text{out}} = L_x + L_y - 1 \]
tiny_ccorr_f32¶
/**
* @name: tiny_ccorr_f32
* @brief Cross-correlation function
*
* @param Signal: input signal array
* @param siglen: length of the signal array
* @param Kernel: input kernel array
* @param kernlen: length of the kernel array
* @param corrvout: output array for the cross-correlation result
*
* @return tiny_error_t
*/
tiny_error_t tiny_ccorr_f32(const float *Signal, const int siglen, const float *Kernel, const int kernlen, float *corrvout)
{
if (NULL == Signal || NULL == Kernel || NULL == corrvout)
{
return TINY_ERR_DSP_NULL_POINTER;
}
float *sig = (float *)Signal;
float *kern = (float *)Kernel;
int lsig = siglen;
int lkern = kernlen;
// swap signal and kernel if needed
if (siglen < kernlen)
{
sig = (float *)Kernel;
kern = (float *)Signal;
lsig = kernlen;
lkern = siglen;
}
#if MCU_PLATFORM_SELECTED == MCU_PLATFORM_ESP32
dsps_ccorr_f32(Signal, siglen, Kernel, kernlen, corrvout);
#else
// stage I
for (int n = 0; n < lkern; n++)
{
size_t k;
size_t kmin = lkern - 1 - n;
corrvout[n] = 0;
for (k = 0; k <= n; k++)
{
corrvout[n] += sig[k] * kern[kmin + k];
}
}
// stage II
for (int n = lkern; n < lsig; n++)
{
size_t kmin, kmax, k;
corrvout[n] = 0;
kmin = n - lkern + 1;
kmax = n;
for (k = kmin; k <= kmax; k++)
{
corrvout[n] += sig[k] * kern[k - kmin];
}
}
// stage III
for (int n = lsig; n < lsig + lkern - 1; n++)
{
size_t kmin, kmax, k;
corrvout[n] = 0;
kmin = n - lkern + 1;
kmax = lsig - 1;
for (k = kmin; k <= kmax; k++)
{
corrvout[n] += sig[k] * kern[k - kmin];
}
}
#endif
return TINY_OK;
}
描述: 计算信号和卷积核之间的互相关性。
特点
- 支持平台加速
参数:
-
Signal
: 输入信号数组 -
siglen
: 信号数组的长度 -
Kernel
: 输入卷积核数组 -
kernlen
: 卷积核数组的长度 -
corrvout
: 输出数组,用于存储互相关性结果
返回值: 返回成功或错误代码。